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Introduction
In this chapter, we will work through a number of  
examples of analysis that are inspired in part by a few 
of the problems introduced in “Spectral Analysis for 
Neural Signals.” Our purpose here is to introduce and 
demonstrate ways to apply the Chronux toolbox to 
these problems. The methods presented here exem-
plify both univariate analysis (techniques restricted 
to signals elaborated over a single time course) and 
bivariate analysis, in which the goal is to investigate 
relationships between two time series. Problems in-
volving more than two time series, or a time series 
combined with functions of spatial coordinates, are 
problems for multivariate analysis. The chapters 
“Multivariate Neural Data Sets: Image Time Series, 
Allen Brain Atlas” and “Optical Imaging Analysis for 
Neural Signal Processing: A Tutorial” deal explicitly 
with these techniques and the use of the Chronux 
toolbox to solve these problems.

“Spectral Analysis for Neural Signals” introduces the 
spectral analysis of single-unit recordings (spikes) 
and continuous processes, for example, local field  
potentials (LFPs). As shown in that chapter, the 
multitaper approach allows the researcher to com-
pute and render graphically several descriptions of 
the dynamics present in most electrophysiological 
data. Neural activity from the lateral intraparietal 
area (LIP) of the alert monkey was used to calculate 
LFP spectrograms and spike-LFP coherograms and, 
most importantly, measures of the reliability of these 
estimates. Although the computations required to 
produce these descriptions are easily attainable us-
ing today’s technology, the steps required to achieve 
meaningful and reliable estimates of neural dynam-
ics need to be carefully orchestrated. Chronux pro-
vides a comprehensive set of tools that organize these 
steps with a set of succinct and transparent MAT-
LAB scripts. Chronux analysis software also clears up 
much of the confusion surrounding which of the pa-
rameters that control these calculations are crucial, 
and what values these parameters should take, given 
the nature of the data and the goals of the analysis.

Chronux is downloadable from www.chronux.org. 
This software package can process both univariate 
and multivariate time series data, and these signals 
can be either continuous (e.g., LFP) or point process 
data (e.g., spikes). Chronux can handle a number of 
signal modalities, including electrophysiological and 
optical recording data. The Chronux release includes 
a spike-sorting toolbox and extensive online and 
within-MATLAB help documentation. Chronux 
also includes scripts that can translate files gener-
ated by NeuroExplorer (Nex Technologies, Little-
ton, MA) (.NEX), and the time-stamped (.PLX) and 

streamed (.DDT) data records collected with Plexon 
(Dallas, TX) equipment.

We will proceed through components of a standard 
electrophysiology analysis protocol in order to illus-
trate some of the tools available in Chronux. Figure 1 
charts the basic steps required for handling most elec-
trophysiological data. We will assume that an editing 
procedure has been used to sort the data into con-
tinuous signals (LFPs or EEGs) and spikes. We will 
also advance to a stage that follows both the spike 
sorting and data conditioning steps (detrending and 
removing artifacts, including 60 Hz line noise). We 
will return to the detrending and 60 Hz line noise 
problems later in the chapter.

Typically, a first step to take in exploratory data analy-
sis is to construct a summary of neural activity that is 
aligned with the appearance of a stimulus or some be-
haviorally relevant event. Recall that in the example 
described in “Spectral Analysis for Neural Signals,” 
the monkey is challenged with a delay period dur-
ing which it must remember the location of a visual 
target that was cued at the beginning of a trial. Each 

Figure 1. Electrophysiological data analysis protocol.
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3 s trial is composed of a 1 s baseline period followed 
by a 2 s period containing the delay and response  
periods. The neural signals, contained in the tutorial 
data file DynNeuroLIP.mat, include three LFP signals 
and two point-process time series (i.e., two channels 
of spike times). Nine trials associated with one target 
direction are included, as are 72 trials of the baseline  
period combined across eight possible target posi-
tions. We will first produce an estimate of the firing 
rate associated with the delay period and then pro-
ceed to look for interactions between the two spikes 
and for any temporal structure in the LFPs.

A script that will take us through these steps can be 
launched by typing

>> lip_master_script

at the command prompt. The first figure generated 
by the script (Fig. 2) details the spike times (as ras-
ter plots) of the two single units for all the baseline 
periods (top row) and for the subset of trials (bottom 
row) associated with one particular target. Note that 
the number of spikes increases roughly 1 s after the 
start of the trial. This increase indicates that some-
thing is indeed happening at the start of the delay  
period and suggests that these neurons may play a role 
in establishing a working memory trace of one target’s 
location. The tutorial script will also produce results 
as in Figure 3, where we see the three LFP signals 
that were recorded alongside the spikes. These signals 
likewise demonstrate a change in activity at the start 
of the delay period. As we proceed through the tuto-
rial, we will see how Chronux can be used to further 
characterize the neural activity in these recordings.

Regression
Figure 4 illustrates one characterization that is of-
ten used for depicting spike data. The top subplot of 
the figure illustrates a standard frequency histogram,  
using a bin size of 104 ms, for a single trial of spike 
response. The rate is calculated by dividing the 
spike count in each bin by the bin width. The bot-
tom subplot of the figure shows a smooth estimate of 
the firing rate generated by applying a local regres-
sion algorithm, locfit. In order to plot the regression 
fit and produce 95% confidence bounds for the rate 

Figure 2. Raster plots for 2 isolated spikes recorded in monkey 
LIP. Each dot represents the time of occurrence of a spike. Each 
row details the spike times from a different trial in the experi-
ment. Top row: baseline period (first second of each trial) for 
all trials. Bottom row: complete trials, including the baseline 
period (0-1 s) and delay and response periods (1-3 s) for a 
subset of trials associated with a single target.

Figure 3. Local field potentials (LFPs) recorded concomitantly 
with the spikes shown in Fig. 1. The LFPs are averaged over 
the trials elaborated in the spike raster plots in Fig. 1. Top row: 
baseline period; bottom row: complete trials. Voltage values 
for the LFPs are in units of microvolts.

Figure 4. Spike rate estimates. Top row: frequency histogram 
constructed from a single trial for one isolated spike. Bin size = 
104 ms. Bottom row: output from Chronux script locfit. The 
solid line depicts an estimate of the spike rate. The dashed 
lines indicate the 95% confidence interval for this estimate. 
The dots along the time access represent the spike times. The 
nearest neighbor variable bandwidth parameter, nn, is set to 
0.7 for locfit.
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estimate, our tutorial script has run locfit using the 
following syntax:

>> fit=locfit(data,’family’,’rate’)

followed by

>> lfplot(fit)

and

>> lfband(fit)

(Fig. 4, dashed lines in bottom subplot). In this case, 
we have opted to fit our single-trial spike train to a 
rate function by setting the family parameter of locfit 
to rate. Alternatively, we could have smoothed the 
spike data by choosing to fit it to a density function 
in which the smoothing is meant to determine the 
probability of firing a spike as a function of time. 
We generated density estimates by setting the family  
parameter in locfit to density instead of rate.

Note the dots that appear along the time axis of the 
bottom subplot: These are the spike times for the 
trial under consideration. Locfit will fit a linear, qua-
dratic, or other user-specified function to some subset 
of the spikes, using each spike time in turn as the 
center point for the least-squares fit. The number 
of spikes in each subset can be stipulated in one of 
two ways: (1) as a fixed “bandwidth”, i.e., time in-
terval. For example, if the parameter h=1 (and the 
spike times are given in units of seconds), then each  
local fit to the data will include 1 s of the trial; or 
(2) with h=0, and nn (nearest neighbor parameter) 
set to some fraction such as 0.3, in which case the 
time interval surrounding each spike will expand (or 
shrink) until 30% of the total number of spikes in the 
time series is included.

>> fit=locfit(data,’family’,’rate‘,’h’,1)

will produce a fit using a fixed bandwidth of 1 s. The 
bottom subplot of Figure 4 was produced with a near-
est neighbor variable bandwidth,

>> fit=locfit(data,’family’,’rate‘,’nn’,0.7)

where nn was set to 0.7. If we change this value to 
a smaller fraction, say 0.3, then the smoothing will 
be done more locally, thereby revealing more of the 
temporal fluctuations in the spike rate (Fig. 5).

The data input to locfit can include multiple tri-
als (following the data format rules outlined in the  
Appendix to this chapter). As seen in Figure 6 (which 
our tutorial script will also generate), the resulting fit 

to our two spike trains appears smoother than the fit 
to the single trial, even though the nearest neighbor 
parameter (nn) is still 0.3. Although the regression is 
always done on a single time series, in this case, all the 
spike times from all the trials for each single unit are 
collapsed into one vector. Note how a smoother esti-
mate arises in Figure 6 than in Figure 5 owing to the 
greater continuity across the samples (spike times) 
of the underlying rate function. Jackknife confidence 
limits can be computed for the multiple trials case 
by holding out each trial in turn from the regression 
fit and then calculating the mean and standard error 
from the ensemble of drop-one fits.

Spectra
We now begin our frequency–domain exploration of 
the dynamics of the LFPs and spikes in our data set. 
Our tutorial script will now generate Figure 7, which 
illustrates a multitaper spectrum calculated from 
the continuous voltage record in one LFP channel 
(sampling rate = 1 KHz) for a single trial. Only the 
delay period of the trial is included in the data array. 
The tutorial script lip_master_script.m includes the  

Figure 5. Spike rate estimate using locfit in Chronux. Here 
the nearest neighbor variable bandwidth parameter, nn, is set 
to 0.3.

Figure 6. Spike rate estimates using locfit. Estimates are con-
structed using all spike times from all trials shown in the bot-
tom row of Figure 2. The nn parameter of locfit is set to 0.3.
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following three lines, which can also be run from the 
command prompt:

>>params.Fs=1000;
>>[S,f]=mtspectrumc(data,params);

>> plot_vector(S,f);   .

The first line sets the sampling rate and, therefore, 
the frequency resolution and range of the spectrum. 
Many Chronux functions use a structure, params, that 
contains a number of fields for assigning values to the 
parameters governing the Fourier analysis routines 
(see Appendix for more about the fields for params). 
The spectrum S and frequency range f used in the cal-
culation are the outputs of mtspectrumc. A Chronux 
script (the third line in this code segment) can be 
used to perform special plotting. The default setting 
for plot_vector produces a plot with a log transform of 
S as a function of a linear frequency range. To plot 
the spectrum on a linear-linear set of axes, use

>> plot_vector(S,f,‘n’)   .

In Figure 7, the spectrum is plotted over a default 
range: from 0 Hz to the Nyquist limit for the sam-
pling rate, 500 Hz. The output range of S and f is 
restricted by setting another field in the params struc-
ture, params.fpass. Figure 8 presents the LFP spectrum 
from the single trial but now with

>>params.fpass=[0 100]   ,

and then, as before

>>params.Fs=1000;
>>[S,f]=mtspectrumc(data,params);

>> plot_vector(S,f);   .

The tutorial script will generate other examples of 
band-limited spectra after you choose lower limits 
and upper limits for the frequency range.

The spacing in the frequency grids used by the fast 
Fourier transforms (FFTs) called by Chronux can be 
adjusted through another field in the structure params. 
If params.pad = –1, then no zeros will be appended to 
the time series, and the frequency grid will be set by the 
defaults imposed by MATLAB. With params.pad = 0,  
the time series will be padded with zeros so that its 
total length is 512 sample points. For params.pad = 
1,2,… the zero padding produces time series that are 
1024, 2048,…, samples in length, respectively. As 
one can see by executing the next code segment,

>> params.pad=1;
>>[S,f]=mtspectrumc(data,params);
>> plot_vector(S,f,‘y’)
>> params.pad=3;
>>[S,f]=mtspectrumc(data,params);

>> plot_vector(S,f,‘m’)   ,

the spectrum generated with a padding factor of 3 
(Fig. 9, red) is computed on a much denser grid than 
the spectrum computed with a padding factor of 1 
(Fig. 9, blue plot).

One advantage of taking the multitaper approach to 
spectral analysis is the ability to control the degree 
of smoothing in the spectrum. This is accomplished 
by adjusting the time-bandwidth product of the 
data windowing, which in turn is established by the 
choice of the number of Slepian tapers to use. The 
tutorial script lip_master_script.m again calculates 
the spectrum of the single trial LFP signal, but now 
with two different degrees of smoothing. As before, 
the number of tapers to use is set by a field in the 

Figure 7. Multitaper spectrum for a single trial LFP; data  
selected from the delay period. The y-axis of the spectrum 
is in units of dB=10*log10(S). params.Fs=1000, params. 
tapers=[3 5], params.fpass=[0 params.Fs/2], params.pad=0.

Figure 8. Multitaper spectrum for a single trial LFP. Data se-
lected from the delay period. params.Fs=1000, params. 
tapers=[3 5], params.fpass=[0 100], params.pad=0.
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structure params: params.tapers=[TW K], where TW 
is the time-bandwidth product and K is the number 
of tapers. For example, if

>> params.tapers=[3 5]   ,

then the time-bandwidth product is TW = 3 and the 
number of tapers used is 5. The rule K = 2*TW – 1 sets 
the highest number of tapers that can be used while 
preserving the good time-frequency concentration of 
the data windowing available from the Slepian taper 
sequences. Fewer tapers than the limit of five can be 
employed, and Chronux will produce a flag when the 
number of tapers requested is inconsistent with the 
TW. T is the length (typically in seconds) of our data 
segment. One can also think of this value as being es-
tablished by the [number of samples in data segment] 
× 1/Fs (inverse of the sampling rate). W is the half-
bandwidth of the multitaper filter, and if we do not 
change T, we can demonstrate changes in smooth-
ing as a function of changes in the half-bandwidth, 
as shown in Figure 10. The tutorial script will prompt 
the user to try other degrees of spectral smoothing by 
entering new values for the time-bandwidth product.

To compute the spectrum over a number of trials and 
return an average thereof, we set the trialave field 
in the structure params to 1. The tutorial script will 
carry out the following steps:

>> params.trialave=1;
>>[S,f]=mtspectrumc(data,params);

>> plot_vector(S,f)   .

If trialave = 0, and the structured array data have any 
number of trials, the output S will be a matrix where 
each column is the spectrum computed from one 
trial’s neural signal.

Chronux will also calculate and plot error bars for 
multitaper spectra. Two different types of confidence 
interval estimates are available. If we set the field err 
in params to

>> params.err=[1 p], with p=0.05, and then 
execute
>>[S,f,Serr]=mtspectrumc(data,params);

>>plot_vector(S,f,[],Serr);   ,

Chronux will plot the spectrum bracketed by the 
theoretical 95% confidence limits for that estimate. 
The array Serr contains the (1 – p)% limits, with the 
lower limit in the first row and the upper limit in 
the second row of the array. In this case, the confi-
dence bounds are based on the parametric distribu-
tion for the variance of a random variable, i.e., the 
chi-square, with two degrees of freedom. If instead, 
we set the field err in params to

>> params.err=[2 p], with p=0.05   ,

the 95% confidence bounds will be derived from a 
jackknife estimate of the standard error for the sam-
ple spectra. Thus, if we run the lines of code given 
above for the theoretical confidence interval, and 
continue with

>> hold
>>p=0.05;
>>params.err=[2 p];
>>[S,f,Serr]=mtspectrumc(data,params);
>>plot(f,10*log10(Serr(1,:)),’r’);

>>plot(f,10*log10(Serr(2,:)),’r’);   ,

a figure similar to that seen in Figure 11 should be 
rendered by the tutorial script. 

Figure 10. Multitaper spectrum for a single trial LFP; data  
selected from the delay period (1 s duration, so T = 1). params.
Fs=1000, params.tapers=[3 5] (blue), params.tapers=[10 
19] (red), params.fpass=[0 100], params.pad=2

Figure 9. Multitaper spectrum for a single trial LFP; data  
selected from the delay period. params.Fs=1000, params.
tapers=[3 5], params.fpass=[0 100], params.pad=1 (blue), 
params.pad=3 (red).
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Note that for these data, the jackknife confidence 
interval (in red) is in good agreement with the so-
called theoretical interval (in blue).

As discussed in detail in other chapters, multitaper 
spectra can be calculated for point process data. As 
described in the Appendix herein, Chronux contains 
a whole set of analogous scripts for point processes 
that match those for continuous data. However, the 
suffixes of the script names carry a pt or pb, for point 
times and point binned, respectively, instead of a c, for 
continuous. For example, the script mtspectrumpt.m 
will compute the multitaper spectrum for data repre-
sented as a series of spike times. The following sec-
tion of MATLAB code will extract a data segment 
of interest from the trials, set the appropriate params 
fields, compute the spectrum for the spike data, and 
plot the results:

data=dsp1t;			   % data from 1st cell
delay_times=[1 2];		  % start and end time  
					     of delay period
data=extractdatapt
(data,delay_times,1); 	 % extracts spikes within 
					     delay period
params.Fs=1000;			  % inverse of the spacing  
					     between points on the  
					     grid used for computing 
					     Slepian functions
params.fpass=[0 100];	 % range of frequencies 
					     of interest
params.tapers=[10 19];	 % tapers

params.trialave=1;		  % average over trials
p=0.05;			   % p value for errors
params.err=[1 p];			  % chi2 errors
[S,f,R,Serr]=mtspectrumpt
(data,params);

The output should be similar to that presented in 
Figure 12. The tutorial script should be able to pro-
duce this figure. One thing to note here is the high 
number of tapers, 19, used for computing the spec-
trum. Owing to the inherent complexity of even a 
single spike’s power spectrum, extensive smoothing 
often helps represent spike spectra. The output vari-
able R is something unique to spike spectra: It is the 
high-frequency estimate of the spike rate derived 
from the spectrum. This estimate is either made on 
a trial-by-trial basis or based on the average, depend-
ing on the setting of the parameter params.trialave. In 
Figure 12, the mean rate estimates appear as dotted 
horizontal lines.

Spectrograms
This section will illustrate how Chronux controls 
the calculation of time-frequency representations 
of neural data. Chronux can generate spectrograms 
for continuous data (like EEGs and LFPs) as well as 
point process activity (spike times and binned spike 
counts). An important component of the Chronux 
spectrogram is the sliding window, which sets the 
width of the data window (usually specified in  
seconds) and how much the window should slide 
along the time axis between samples. Within each 

Figure 11. Multitaper spectrum for LFP using all trials asso-
ciated with one target; data selected from the delay period. 
params.Fs=1000, params.tapers=[10 19], params.fpass=[0 
100], params.pad=2, params.trialave=1 (average spectrum 
shown in black), params.err=[1 .05] (blue), params.err=[2 
.05] (red).

Figure 12. Multitaper spectrum for two spikes recorded 
in area LIP; delay period activity only. Top: Cell 1, params.
Fs=1000, params.tapers=[10 19], params.fpass=[0 100], 
params.pad=0, params.trialave=1 (average, heavy line), 
params.err=[1 .05] (dashed lines), mean rate estimate (dotted 
horizontal line). Bottom: Cell 2, params.Fs=1000, params.
tapers=[10 19], params.fpass=[0 500], params.pad=0, 
params.trialave=1 (average, heavy line), params.err=[1 .05] 
(dashed lines), mean rate estimate (dotted horizontal line).
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window, multitaper spectral analysis of the data 
proceeds as it does when calculating standard spec-
tra. However, one must remember that the spectral 
analysis is restricted to the temporal window for the 
data. Thus, the number of tapers used for the spec-
trogram should reflect the time-bandwidth product 
of the window, not the dimensions of the entire data 
segment of interest. Extensive temporal overlapping 
between successive windows will tend to produce 
smoother spectrograms. The following code fragment 
from the tutorial script (lip_master_script.m) will help 
generate spectrograms for two of the LFP channels in 
our data set (Fig. 13):

movingwin=[0.5 0.05]; 	 % set the moving 
					     window dimensions
params.Fs=1000; 		  % sampling frequency
params.fpass=[0 100]; 	 % frequencies of 
					     interest
params.tapers=[5 9]; 	 % tapers
params.trialave=1; 		  % average over trials
params.err=0; 			   % no error 
					     computation

data=dlfp1t; 			   % data from channel 1
[S1,t,f]=mtspecgramc
(data,movingwin,params);	 % compute 
					     spectrogram
subplot(121)
plot_matrix(S1,t,f);
xlabel([]);			   % plot spectrogram
caxis([8 28]); colorbar;

data=dlfp2t; 			   % data from channel 2
[S2,t,f]=mtspecgramc
(data,movingwin,params); 	 % compute 
					     spectrogram
subplot(122);
plot_matrix(S2,t,f); 
xlabel([]);			   % plot spectrogram
caxis([8 28]); colorbar;

Note the use of the special Chronux plotting rou-
tine plot_matrix. Here the window is set to 500 ms 
in duration with a slide of 50 ms along the time axis 
between successive windows.

The same sets of parameters used for continuous LFP 
signals can be employed for calculating the spike 
spectrograms (Fig. 14). However, one useful modifi-
cation to make when plotting spike spectrograms is 
to normalize the spike power S by the mean firing 
rate R. For example,

data=dsp1t; 			   % data from 1st cell
[S,t,f,R]=mtspecgrampt
(data,movingwin,params);	 % compute 
					     spectrogram
figure;
subplot(211);
					     % plot spectrogram 
					     normalized by rate
plot_matrix(S./repmat(R,
[1 size(S,2)]),t,f);xlabel([]);
caxis([-5 6]);colorbar;

data=dsp2t; 			   % data from 2nd cell
[S,t,f,R]=mtspecgrampt
(data,movingwin,params); 	 % compute 
					     spectrogram
subplot(212);
					     % plot spectrogram 
					     normalized by rate
plot_matrix(S./repmat(R,
[1 size(S,2)]),t,f);
caxis([-5 6]);colorbar;

The normalized spectrograms demonstrate how the 
spike power fluctuates across the trials with respect 
to the mean rate. Here one can readily observe that, 
while there is an increase in gamma-band power in 
the spike discharge with respect to the mean rate 
during the delay period (Fig. 14, yellow-orange col-
ors, top subplot), the power in the lower-frequency 
fluctuations in the spike discharge is suppressed with 
respect to the mean rate (blue colors).

Coherence
As an example of the use of Chronux software for 
evaluating the strength of correlations between differ-
ent neural signals, we will calculate the spike-field co-
herence for pairs drawn from the three LFP channels 
and two spike channels in our monkey parietal lobe 
data set. As discussed in “Spectral Analysis for Neural 
Signals,” spike-field coherence is a frequency-domain 
representation of the similarity of dynamics between 
a spike train and the voltage fluctuations produced by 
activity in the spiking neuron’s local neural environ-

Figure 13. Time-frequency spectrograms for two LFP chan-
nels. Activity from all trials, over the entire trial (3 s) used 
for the analysis. Movingwin=[.5 .05], params.Fs=1000, 
params.tapers=[5 9], params.fpass=[0 100], params.
pad=0, params.trialave=1, params.err=0.
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ment. As before, we start by setting the values of the 
parameters carried by the structure params:

params.Fs=1000; 		  % sampling frequency,
					     same for LFP and spike
params.fpass=[0 100]; 	 % frequency range 
					     of interest
params.tapers=[10 19]; 	 % emphasize smoothing 
					     for the spikes
params.trialave=1; 		  % average over trials
params.err=[1 0.05]; 	 % population error bars

delay_times=[1 2];		  % define the delay period 
					     (between 1 and 2 
					     seconds)
datasp=extractdatapt
(dsp1t,delay_times,1);	 % extract the spike data
					      from the delay period
datalfp=extractdatac
(dlfp1t,params.Fs,
delay_times);			   % extract the LFP data
					      from the delay period

[C,phi,S12,S1,S2,f,
zerosp,confC,phistd]=
coherencycpt
(datalfp,datasp,params);	 % compute the coherence

Note that the script for computing the coherency is 
coherencycpt, a function that handles the hybrid case 
mixing continuous and point process data. For the 
outputs, we have the following:

•	 �C, the magnitude of the coherency, a complex 
quantity (ranges from 0 to 1);

•	 �phi, the phase of the coherency;
•	 �S1 and S2, the spectra for the spikes and LFP  

signals, respectively;
•	 �f, the frequency grid used for the calculations;
•	 �zerosp, 1 for trials for which there was at least one 

spike, 0 for trials with no spikes;
•	 �confC, confidence level for C at (1  – p)% if 

params.err=[1 p] or params.err=[2 p]; and
•	 �phistd, theoretical or jackknife standard devia-

tion, depending on the params.err selection

These are used to calculate the confidence intervals 
for the phase of the coherency.

This code segment, which is called by the tutorial 
script, should generate a graphic similar to Figure 15. 
The top row of the figure shows the spike-field coher-
ence for spike 1 against the three LFP channels. The 
bottom row has the spike-field coherence estimates 
for spike 2 against the three LFP channels. The fig-
ure depicts the confidence level for the coherence 
estimates as a horizontal dotted line running through 
all the plots; coherence values above this level are 
significant. We see from this figure that the spikes 
and LFPs in the monkey parietal cortex showed an 
enhanced coherence during the delay period for the 
frequency range from ~25 Hz to more than 100 Hz 
for all the matchups, except LFP3, with both spikes. 
For the coherence measures involving LFP3, the co-
herence is not significant for very fast fluctuations 
(>90 Hz).

Figure 15. Spike-field coherence. Top row: coherence es-
timates between cell (spike) 1 with LFP channel 1 (left), LFP 
channel 2 (middle), and LFP channel 3 (right). Bottom row: 
coherence estimates between cell (spike) 2 with LFP channel 1 
(left), LFP channel 2 (middle), and LFP channel 3 (right). Signifi-
cance level for the coherence estimates: horizontal dotted line 
running through all plots.

Figure 14. Time-frequency spike spectrograms for two spikes 
recorded in LIP. Activity from all trials, over the entire trial  
(3 s) used for the analysis. Spectrograms are normalized by 
the mean rates of the two single units. Movingwin=[.5 .05], 
params.Fs=1000, params.tapers=[5 9], params.fpass= 
[0 100], params.pad=0, params.trialave=1, params.err=0. 
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Using Chronux, we can also estimate the coherence 
between two spike trains. The setup of the parame-
ters for the calculation is very similar to that required 
for the hybrid script:

>> params.err=[2 p];
>> [C,phi,S12,S1,S2,f,zerosp,confC,phistd,
Cerr]=coherencypt(datasp1,datasp2,params);

Here, phistd is the jackknifed standard deviation of 
the phase, and Cerr is the (1 – p)% confidence in-
terval for the coherence. Figure 16 shows a plot of 
the spike-spike coherence, comparing the delay  
period activity (in blue) with the coherence during 
the baseline (in red).

Denoising
In Figure 17, we expand the Data Conditioning 
subgraph of the electrophysiology analysis proto-
col first introduced in Figure 1. The branch for the 
LFP data carries us through two stages of processing:  

local detrending and the testing and removal of 60 
Hz line noise. Electrophysiological recordings, both 
in the research laboratory and in clinical settings, 
are prone to contamination. 60 Hz line noise (50 Hz 
in Europe), slow drifts in baseline voltage, electrical 
transients, ECG, and breathing movements all con-
tribute different types of distortion to the recorded 
signal. Methods for removing particular waveforms, 
such as ECG and large electrical transients, have 
good solutions that are treated elsewhere (Perasan B,  

“Spectral Analysis for Neural Signals”; Mitra and 
Pesaran, 1999; Sornborger et al., 2005; Mitra and 
Bokil, 2008). We will focus here on slow fluctuations 
in electrophysiological signals and line noise.

If we add a sinusoidal voltage fluctuation to one of 

our LIP LFP recordings, the result will look some-
thing like Figure 18 (top left). Such a slow fluctua-
tion could be entirely the result of changes in the 
electrostatic charges built up around the recording 
environment. Therefore, it is noise and we should 
try to remove it. With Chronux, we use a local lin-
ear regression to detrend neural signals. The script  
locdetrend utilizes a moving window controlled by 
params to select time samples from the signal. The 
best fitting line, in a least-squares sense, for each 
sample is weighted and combined to estimate the 
slow fluctuation, which is then removed from the 
data signal.

For Figure 18 (top middle),

>> dLFP=locdetrend(LFP,[.1 .05]).

The dimensions of the sampling window are 100 ms 

Figure 16. Coherence between spikes of cell 1 and cell 2. Blue 
traces: data restricted to the delay period of each trial (solid 
line, average coherence; dashed lines, 95% jackknife confi-
dence interval for this estimate of the coherence). Red trace: 
data restricted to the baseline period of each trial. Horizontal 
line: significance level for the coherence estimates. params.
Fs=1000, params.tapers=[10 19], params.fpass=[0 100], 
params.pad=0, params.trialave=1, params.err=[2 .05].

Figure 17. Data conditioning component of electrophysiologi-
cal analysis protocol.



76

Notes

© 2008 Purpura

in duration, with a window shift of 50 ms between 
samples. Note that the detrended signal has much less 
low-frequency fluctuation than the original signal (Fig. 
18, top left). In Figure 18 (top right), we see that the 
estimate of the slow fluctuation (blue) does a pretty  
good job of capturing the actual signal (red) that was 
added to the LFP data. However, if the sampling win-
dow parameters are not well matched to changes in 
the signal, the detrending will not be successful. 

For Figure 18 (bottom, center),

>> dLFP=locdetrend(LFP,[.5 .1]).

Window duration = 500 ms, half the sample length 
with a window shift of 100 ms. Here the estimate of 
the slow fluctuation (blue) does a poor job of captur-
ing the sinusoid (Fig. 18, red, bottom right).

Chronux accomplishes the removal of 60 Hz line 
noise by applying Thomson’s regression method for 
detecting sinusoids in signals (Thomson, 1982). This 
method does not require that the data signal have 
a uniform (white) power spectrum. The Chronux 
script rmlinesc can either remove a sinusoid of chosen 
frequency or automatically remove any harmonics 
whose power exceeds a criterion in the F-distribution 
(the F-test). Figure 19 demonstrates the application 
of the F-test option of rmlinesc.

>>no60LFP=rmlinesc(LFP,params).

Here the LFP (Fig. 19, top left) has been contaminat-
ed with the addition of a 60 Hz sinusoid. The mul-
titaper spectrum of this signal is shown in Figure 19  
(top right panel). Note the prominent 60 Hz element 
in this spectrum (broadened but well defined by the 
application of the multitaper technique). The spec-

trum of no60LFP is shown in the figure’s bottom left 
panel; the time series with the 60 Hz noise removed, 
the vector returned by rmlinesc, is shown in the bot-
tom right panel.

Appendix: Chronux Scripts
While not an exhaustive list of what is available in 
Chronux, the scripts enumerated here (discussed in 
this chapter) are often some of the most useful for 
trying first during the early phase of exploratory data 
analysis. This section describes the means for setting 
some of the more important parameters for control-
ling multitaper spectral calculations, as well as the 
basic rules for formatting input data.

Denoising
(1) �Slow variations (e.g., movements of a patient for 

EEG data)
		  locdetrend.m: Loess method
(2) �50/60 Hz line noise
		  rmlinesc.m
		  rmlinesmovingwinc.m

Spectra and coherences (continuous processes)
(1) Fourier transforms using multiple tapers
		  mtfftc.m
(2) Spectrum
		  mtspectrumc.m
(3) Spectrogram
		  mtspecgramc.m
(4) Coherency
		  mtcoherencyc.m
(5) Coherogram
		  mtcohgramc.m
Analogous scripts are available for analyzing time  

Figure 19. Application of rmlinesc.

Figure 18. Application of locdetrend. 
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series data organized in alternative formats. Point- 
process time series data can be analyzed using 
mtfftpt.m, mtspectrumpt.m, etc. Binned spike count 
data can be analyzed with mtfftb.m, mtspectrumb.m, 
etc. An additional set of scripts is available for cal-
culating the coherence between a continuous series 
and a point-process time series (coherencycpt.m, 
coherogramcpt.m, etc.), and for the coherence 
between a continuous and binned spike counts 
(coherencycpb.m, coherogramcpb.m, etc).

In a typical function call, such as

[S,f,Serr]=mtspectrumc(data,params), a structure 
params is passed to the script. This structure sets val-
ues for a number of important parameters used by 
this and many other algorithms in Chronux.

params.Fs	� Sampling frequency (e.g., if data 
are sampled at 1 kHz, use 1000).

params.tapers 	� Number of tapers to use in spectral 
analysis specified by either passing 
a matrix of precalculated Slepian 
tapers (using the dpss function in 
MATLAB) or calculating the time-
frequency bandwidth and the num-
ber of tapers as [NW K], where K is 
the number of tapers. Default val-
ues are params.tapers=[3 5]. 	

params.pad	� Amount of zero-padding for the 
FFT routines utilized in the multi-
taper spectral analysis algorithms. If 
pad = –1, no padding; if pad = 0, 
the FFT is padded to 512 points; if 
pad = 1, the FFT is padded to 1024 
points, pad = 2, padding is 2048 
points, etc. For a spectrum with a 
dense frequency grid, use more pad-
ding.

params.fpass	� Frequency range of interest. As a 
default, [0 Fs/2] will allow from DC 
up to the Nyquist limit of the sam-
pling rate.

params.err	� Controls error computation. For 
err=[1 p], so-called theoretical er-
ror bars at significance level p are 
generated and placed in the output 
Serr; err=[2 p] for jackknife error 
bars; err=[0 p] or err=0 for no error 
bars (make sure that Serr is not re-
quested in the output in this case).

params.trialavg	� If 1, average over trials/channels; if 
set to 0 (default), no averaging.

Local regression and likelihood

(1) Regression and likelihood
		  locfit.m
(2) Plotting the fit
		  lfplot.m	
(3) Plotting local confidence bands
		  lfband.m
(4) Plotting global confidence bands	
		  scb.m

Data format
(1) Continuous/binned spike count data
		�  Matrices with dimensions: time (rows) ×  

trials/channels (columns)
		�  Example: 1000 × 10 matrix is interpreted as 

1000 time-point samples for 10 trials from 1 
channel or 1 trial from 10 channels. If mul-
tiple trials and channels are used, then add 
more columns to the matrix for each addi-
tional trial and channel.

(2) Spike times
		�  Structured array with dimension equal to the 

number of trials/channels.
		  �Example: 	 data(1).times=[0.3 0.35 0.42 0.6]
				    data(2).times=[0.2 0.22 0.35]
		�  Chronux interprets data as two trials/chan-

nels: four spikes collected at the times (in 
seconds) listed in the bracket for the first 
trial/channel, and three spikes collected in 
the second trial/channel.

Supported third-party data formats
NeuroExplorer (.NEX)
Plexon (both .PLX and .DDT file formats)
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