
© 2008 Purpura

Neural Signal Processing: Tutorial 1
Keith P. Purpura, PhD1 and Hemant Bokil, PhD2

1Department of Neurology and Neuroscience, Weill Cornell Medical College
New York, New York

2Cold Spring Harbor Laboratory
Cold Spring Harbor, New York

67

Notes

© 2008 Purpura

Neural Signal Processing: Tutorial 1

Introduction
In this chapter, we will work through a number of
examples of analysis that are inspired in part by a few
of the problems introduced in “Spectral Analysis for
Neural Signals.” Our purpose here is to introduce and
demonstrate ways to apply the Chronux toolbox to
these problems. The methods presented here exem-
plify both univariate analysis (techniques restricted
to signals elaborated over a single time course) and
bivariate analysis, in which the goal is to investigate
relationships between two time series. Problems in-
volving more than two time series, or a time series
combined with functions of spatial coordinates, are
problems for multivariate analysis. The chapters
“Multivariate Neural Data Sets: Image Time Series,
Allen Brain Atlas” and “Optical Imaging Analysis for
Neural Signal Processing: A Tutorial” deal explicitly
with these techniques and the use of the Chronux
toolbox to solve these problems.

“Spectral Analysis for Neural Signals” introduces the
spectral analysis of single-unit recordings (spikes)
and continuous processes, for example, local field
potentials (LFPs). As shown in that chapter, the
multitaper approach allows the researcher to com-
pute and render graphically several descriptions of
the dynamics present in most electrophysiological
data. Neural activity from the lateral intraparietal
area (LIP) of the alert monkey was used to calculate
LFP spectrograms and spike-LFP coherograms and,
most importantly, measures of the reliability of these
estimates. Although the computations required to
produce these descriptions are easily attainable us-
ing today’s technology, the steps required to achieve
meaningful and reliable estimates of neural dynam-
ics need to be carefully orchestrated. Chronux pro-
vides a comprehensive set of tools that organize these
steps with a set of succinct and transparent MAT-
LAB scripts. Chronux analysis software also clears up
much of the confusion surrounding which of the pa-
rameters that control these calculations are crucial,
and what values these parameters should take, given
the nature of the data and the goals of the analysis.

Chronux is downloadable from www.chronux.org.
This software package can process both univariate
and multivariate time series data, and these signals
can be either continuous (e.g., LFP) or point process
data (e.g., spikes). Chronux can handle a number of
signal modalities, including electrophysiological and
optical recording data. The Chronux release includes
a spike-sorting toolbox and extensive online and
within-MATLAB help documentation. Chronux
also includes scripts that can translate files gener-
ated by NeuroExplorer (Nex Technologies, Little-
ton, MA) (.NEX), and the time-stamped (.PLX) and

streamed (.DDT) data records collected with Plexon
(Dallas, TX) equipment.

We will proceed through components of a standard
electrophysiology analysis protocol in order to illus-
trate some of the tools available in Chronux. Figure 1
charts the basic steps required for handling most elec-
trophysiological data. We will assume that an editing
procedure has been used to sort the data into con-
tinuous signals (LFPs or EEGs) and spikes. We will
also advance to a stage that follows both the spike
sorting and data conditioning steps (detrending and
removing artifacts, including 60 Hz line noise). We
will return to the detrending and 60 Hz line noise
problems later in the chapter.

Typically, a first step to take in exploratory data analy-
sis is to construct a summary of neural activity that is
aligned with the appearance of a stimulus or some be-
haviorally relevant event. Recall that in the example
described in “Spectral Analysis for Neural Signals,”
the monkey is challenged with a delay period dur-
ing which it must remember the location of a visual
target that was cued at the beginning of a trial. Each

Figure 1. Electrophysiological data analysis protocol.

68

Notes

© 2008 Purpura

3 s trial is composed of a 1 s baseline period followed
by a 2 s period containing the delay and response
periods. The neural signals, contained in the tutorial
data file DynNeuroLIP.mat, include three LFP signals
and two point-process time series (i.e., two channels
of spike times). Nine trials associated with one target
direction are included, as are 72 trials of the baseline
period combined across eight possible target posi-
tions. We will first produce an estimate of the firing
rate associated with the delay period and then pro-
ceed to look for interactions between the two spikes
and for any temporal structure in the LFPs.

A script that will take us through these steps can be
launched by typing

>> lip_master_script

at the command prompt. The first figure generated
by the script (Fig. 2) details the spike times (as ras-
ter plots) of the two single units for all the baseline
periods (top row) and for the subset of trials (bottom
row) associated with one particular target. Note that
the number of spikes increases roughly 1 s after the
start of the trial. This increase indicates that some-
thing is indeed happening at the start of the delay
period and suggests that these neurons may play a role
in establishing a working memory trace of one target’s
location. The tutorial script will also produce results
as in Figure 3, where we see the three LFP signals
that were recorded alongside the spikes. These signals
likewise demonstrate a change in activity at the start
of the delay period. As we proceed through the tuto-
rial, we will see how Chronux can be used to further
characterize the neural activity in these recordings.

Regression
Figure 4 illustrates one characterization that is of-
ten used for depicting spike data. The top subplot of
the figure illustrates a standard frequency histogram,
using a bin size of 104 ms, for a single trial of spike
response. The rate is calculated by dividing the
spike count in each bin by the bin width. The bot-
tom subplot of the figure shows a smooth estimate of
the firing rate generated by applying a local regres-
sion algorithm, locfit. In order to plot the regression
fit and produce 95% confidence bounds for the rate

Figure 2. Raster plots for 2 isolated spikes recorded in monkey
LIP. Each dot represents the time of occurrence of a spike. Each
row details the spike times from a different trial in the experi-
ment. Top row: baseline period (first second of each trial) for
all trials. Bottom row: complete trials, including the baseline
period (0-1 s) and delay and response periods (1-3 s) for a
subset of trials associated with a single target.

Figure 3. Local field potentials (LFPs) recorded concomitantly
with the spikes shown in Fig. 1. The LFPs are averaged over
the trials elaborated in the spike raster plots in Fig. 1. Top row:
baseline period; bottom row: complete trials. Voltage values
for the LFPs are in units of microvolts.

Figure 4. Spike rate estimates. Top row: frequency histogram
constructed from a single trial for one isolated spike. Bin size =
104 ms. Bottom row: output from Chronux script locfit. The
solid line depicts an estimate of the spike rate. The dashed
lines indicate the 95% confidence interval for this estimate.
The dots along the time access represent the spike times. The
nearest neighbor variable bandwidth parameter, nn, is set to
0.7 for locfit.

69

Notes

© 2008 Purpura

Neural Signal Processing: Tutorial 1

estimate, our tutorial script has run locfit using the
following syntax:

>> fit=locfit(data,’family’,’rate’)

followed by

>> lfplot(fit)

and

>> lfband(fit)

(Fig. 4, dashed lines in bottom subplot). In this case,
we have opted to fit our single-trial spike train to a
rate function by setting the family parameter of locfit
to rate. Alternatively, we could have smoothed the
spike data by choosing to fit it to a density function
in which the smoothing is meant to determine the
probability of firing a spike as a function of time.
We generated density estimates by setting the family
parameter in locfit to density instead of rate.

Note the dots that appear along the time axis of the
bottom subplot: These are the spike times for the
trial under consideration. Locfit will fit a linear, qua-
dratic, or other user-specified function to some subset
of the spikes, using each spike time in turn as the
center point for the least-squares fit. The number
of spikes in each subset can be stipulated in one of
two ways: (1) as a fixed “bandwidth”, i.e., time in-
terval. For example, if the parameter h=1 (and the
spike times are given in units of seconds), then each
local fit to the data will include 1 s of the trial; or
(2) with h=0, and nn (nearest neighbor parameter)
set to some fraction such as 0.3, in which case the
time interval surrounding each spike will expand (or
shrink) until 30% of the total number of spikes in the
time series is included.

>> fit=locfit(data,’family’,’rate‘,’h’,1)

will produce a fit using a fixed bandwidth of 1 s. The
bottom subplot of Figure 4 was produced with a near-
est neighbor variable bandwidth,

>> fit=locfit(data,’family’,’rate‘,’nn’,0.7)

where nn was set to 0.7. If we change this value to
a smaller fraction, say 0.3, then the smoothing will
be done more locally, thereby revealing more of the
temporal fluctuations in the spike rate (Fig. 5).

The data input to locfit can include multiple tri-
als (following the data format rules outlined in the
Appendix to this chapter). As seen in Figure 6 (which
our tutorial script will also generate), the resulting fit

to our two spike trains appears smoother than the fit
to the single trial, even though the nearest neighbor
parameter (nn) is still 0.3. Although the regression is
always done on a single time series, in this case, all the
spike times from all the trials for each single unit are
collapsed into one vector. Note how a smoother esti-
mate arises in Figure 6 than in Figure 5 owing to the
greater continuity across the samples (spike times)
of the underlying rate function. Jackknife confidence
limits can be computed for the multiple trials case
by holding out each trial in turn from the regression
fit and then calculating the mean and standard error
from the ensemble of drop-one fits.

Spectra
We now begin our frequency–domain exploration of
the dynamics of the LFPs and spikes in our data set.
Our tutorial script will now generate Figure 7, which
illustrates a multitaper spectrum calculated from
the continuous voltage record in one LFP channel
(sampling rate = 1 KHz) for a single trial. Only the
delay period of the trial is included in the data array.
The tutorial script lip_master_script.m includes the

Figure 5. Spike rate estimate using locfit in Chronux. Here
the nearest neighbor variable bandwidth parameter, nn, is set
to 0.3.

Figure 6. Spike rate estimates using locfit. Estimates are con-
structed using all spike times from all trials shown in the bot-
tom row of Figure 2. The nn parameter of locfit is set to 0.3.

70

Notes

© 2008 Purpura

following three lines, which can also be run from the
command prompt:

>>params.Fs=1000;
>>[S,f]=mtspectrumc(data,params);

>> plot_vector(S,f); .

The first line sets the sampling rate and, therefore,
the frequency resolution and range of the spectrum.
Many Chronux functions use a structure, params, that
contains a number of fields for assigning values to the
parameters governing the Fourier analysis routines
(see Appendix for more about the fields for params).
The spectrum S and frequency range f used in the cal-
culation are the outputs of mtspectrumc. A Chronux
script (the third line in this code segment) can be
used to perform special plotting. The default setting
for plot_vector produces a plot with a log transform of
S as a function of a linear frequency range. To plot
the spectrum on a linear-linear set of axes, use

>> plot_vector(S,f,‘n’) .

In Figure 7, the spectrum is plotted over a default
range: from 0 Hz to the Nyquist limit for the sam-
pling rate, 500 Hz. The output range of S and f is
restricted by setting another field in the params struc-
ture, params.fpass. Figure 8 presents the LFP spectrum
from the single trial but now with

>>params.fpass=[0 100] ,

and then, as before

>>params.Fs=1000;
>>[S,f]=mtspectrumc(data,params);

>> plot_vector(S,f); .

The tutorial script will generate other examples of
band-limited spectra after you choose lower limits
and upper limits for the frequency range.

The spacing in the frequency grids used by the fast
Fourier transforms (FFTs) called by Chronux can be
adjusted through another field in the structure params.
If params.pad = –1, then no zeros will be appended to
the time series, and the frequency grid will be set by the
defaults imposed by MATLAB. With params.pad = 0,
the time series will be padded with zeros so that its
total length is 512 sample points. For params.pad =
1,2,… the zero padding produces time series that are
1024, 2048,…, samples in length, respectively. As
one can see by executing the next code segment,

>> params.pad=1;
>>[S,f]=mtspectrumc(data,params);
>> plot_vector(S,f,‘y’)
>> params.pad=3;
>>[S,f]=mtspectrumc(data,params);

>> plot_vector(S,f,‘m’) ,

the spectrum generated with a padding factor of 3
(Fig. 9, red) is computed on a much denser grid than
the spectrum computed with a padding factor of 1
(Fig. 9, blue plot).

One advantage of taking the multitaper approach to
spectral analysis is the ability to control the degree
of smoothing in the spectrum. This is accomplished
by adjusting the time-bandwidth product of the
data windowing, which in turn is established by the
choice of the number of Slepian tapers to use. The
tutorial script lip_master_script.m again calculates
the spectrum of the single trial LFP signal, but now
with two different degrees of smoothing. As before,
the number of tapers to use is set by a field in the

Figure 7. Multitaper spectrum for a single trial LFP; data
selected from the delay period. The y-axis of the spectrum
is in units of dB=10*log10(S). params.Fs=1000, params.
tapers=[3 5], params.fpass=[0 params.Fs/2], params.pad=0.

Figure 8. Multitaper spectrum for a single trial LFP. Data se-
lected from the delay period. params.Fs=1000, params.
tapers=[3 5], params.fpass=[0 100], params.pad=0.

71

Notes

© 2008 Purpura

Neural Signal Processing: Tutorial 1

structure params: params.tapers=[TW K], where TW
is the time-bandwidth product and K is the number
of tapers. For example, if

>> params.tapers=[3 5] ,

then the time-bandwidth product is TW = 3 and the
number of tapers used is 5. The rule K = 2*TW – 1 sets
the highest number of tapers that can be used while
preserving the good time-frequency concentration of
the data windowing available from the Slepian taper
sequences. Fewer tapers than the limit of five can be
employed, and Chronux will produce a flag when the
number of tapers requested is inconsistent with the
TW. T is the length (typically in seconds) of our data
segment. One can also think of this value as being es-
tablished by the [number of samples in data segment]
× 1/Fs (inverse of the sampling rate). W is the half-
bandwidth of the multitaper filter, and if we do not
change T, we can demonstrate changes in smooth-
ing as a function of changes in the half-bandwidth,
as shown in Figure 10. The tutorial script will prompt
the user to try other degrees of spectral smoothing by
entering new values for the time-bandwidth product.

To compute the spectrum over a number of trials and
return an average thereof, we set the trialave field
in the structure params to 1. The tutorial script will
carry out the following steps:

>> params.trialave=1;
>>[S,f]=mtspectrumc(data,params);

>> plot_vector(S,f) .

If trialave = 0, and the structured array data have any
number of trials, the output S will be a matrix where
each column is the spectrum computed from one
trial’s neural signal.

Chronux will also calculate and plot error bars for
multitaper spectra. Two different types of confidence
interval estimates are available. If we set the field err
in params to

>> params.err=[1 p], with p=0.05, and then
execute
>>[S,f,Serr]=mtspectrumc(data,params);

>>plot_vector(S,f,[],Serr); ,

Chronux will plot the spectrum bracketed by the
theoretical 95% confidence limits for that estimate.
The array Serr contains the (1 – p)% limits, with the
lower limit in the first row and the upper limit in
the second row of the array. In this case, the confi-
dence bounds are based on the parametric distribu-
tion for the variance of a random variable, i.e., the
chi-square, with two degrees of freedom. If instead,
we set the field err in params to

>> params.err=[2 p], with p=0.05 ,

the 95% confidence bounds will be derived from a
jackknife estimate of the standard error for the sam-
ple spectra. Thus, if we run the lines of code given
above for the theoretical confidence interval, and
continue with

>> hold
>>p=0.05;
>>params.err=[2 p];
>>[S,f,Serr]=mtspectrumc(data,params);
>>plot(f,10*log10(Serr(1,:)),’r’);

>>plot(f,10*log10(Serr(2,:)),’r’); ,

a figure similar to that seen in Figure 11 should be
rendered by the tutorial script.

Figure 10. Multitaper spectrum for a single trial LFP; data
selected from the delay period (1 s duration, so T = 1). params.
Fs=1000, params.tapers=[3 5] (blue), params.tapers=[10
19] (red), params.fpass=[0 100], params.pad=2

Figure 9. Multitaper spectrum for a single trial LFP; data
selected from the delay period. params.Fs=1000, params.
tapers=[3 5], params.fpass=[0 100], params.pad=1 (blue),
params.pad=3 (red).

72

Notes

© 2008 Purpura

Note that for these data, the jackknife confidence
interval (in red) is in good agreement with the so-
called theoretical interval (in blue).

As discussed in detail in other chapters, multitaper
spectra can be calculated for point process data. As
described in the Appendix herein, Chronux contains
a whole set of analogous scripts for point processes
that match those for continuous data. However, the
suffixes of the script names carry a pt or pb, for point
times and point binned, respectively, instead of a c, for
continuous. For example, the script mtspectrumpt.m
will compute the multitaper spectrum for data repre-
sented as a series of spike times. The following sec-
tion of MATLAB code will extract a data segment
of interest from the trials, set the appropriate params
fields, compute the spectrum for the spike data, and
plot the results:

data=dsp1t;			 % data from 1st cell
delay_times=[1 2];		 % start and end time
					 of delay period
data=extractdatapt
(data,delay_times,1); 	 % extracts spikes within
					 delay period
params.Fs=1000;			 % inverse of the spacing
					 between points on the
					 grid used for computing
					 Slepian functions
params.fpass=[0 100];	 % range of frequencies
					 of interest
params.tapers=[10 19];	 % tapers

params.trialave=1;		 % average over trials
p=0.05;			 % p value for errors
params.err=[1 p];			 % chi2 errors
[S,f,R,Serr]=mtspectrumpt
(data,params);

The output should be similar to that presented in
Figure 12. The tutorial script should be able to pro-
duce this figure. One thing to note here is the high
number of tapers, 19, used for computing the spec-
trum. Owing to the inherent complexity of even a
single spike’s power spectrum, extensive smoothing
often helps represent spike spectra. The output vari-
able R is something unique to spike spectra: It is the
high-frequency estimate of the spike rate derived
from the spectrum. This estimate is either made on
a trial-by-trial basis or based on the average, depend-
ing on the setting of the parameter params.trialave. In
Figure 12, the mean rate estimates appear as dotted
horizontal lines.

Spectrograms
This section will illustrate how Chronux controls
the calculation of time-frequency representations
of neural data. Chronux can generate spectrograms
for continuous data (like EEGs and LFPs) as well as
point process activity (spike times and binned spike
counts). An important component of the Chronux
spectrogram is the sliding window, which sets the
width of the data window (usually specified in
seconds) and how much the window should slide
along the time axis between samples. Within each

Figure 11. Multitaper spectrum for LFP using all trials asso-
ciated with one target; data selected from the delay period.
params.Fs=1000, params.tapers=[10 19], params.fpass=[0
100], params.pad=2, params.trialave=1 (average spectrum
shown in black), params.err=[1 .05] (blue), params.err=[2
.05] (red).

Figure 12. Multitaper spectrum for two spikes recorded
in area LIP; delay period activity only. Top: Cell 1, params.
Fs=1000, params.tapers=[10 19], params.fpass=[0 100],
params.pad=0, params.trialave=1 (average, heavy line),
params.err=[1 .05] (dashed lines), mean rate estimate (dotted
horizontal line). Bottom: Cell 2, params.Fs=1000, params.
tapers=[10 19], params.fpass=[0 500], params.pad=0,
params.trialave=1 (average, heavy line), params.err=[1 .05]
(dashed lines), mean rate estimate (dotted horizontal line).

73

Notes

© 2008 Purpura

Neural Signal Processing: Tutorial 1

window, multitaper spectral analysis of the data
proceeds as it does when calculating standard spec-
tra. However, one must remember that the spectral
analysis is restricted to the temporal window for the
data. Thus, the number of tapers used for the spec-
trogram should reflect the time-bandwidth product
of the window, not the dimensions of the entire data
segment of interest. Extensive temporal overlapping
between successive windows will tend to produce
smoother spectrograms. The following code fragment
from the tutorial script (lip_master_script.m) will help
generate spectrograms for two of the LFP channels in
our data set (Fig. 13):

movingwin=[0.5 0.05]; 	 % set the moving
					 window dimensions
params.Fs=1000; 		 % sampling frequency
params.fpass=[0 100]; 	 % frequencies of
					 interest
params.tapers=[5 9]; 	 % tapers
params.trialave=1; 		 % average over trials
params.err=0; 			 % no error
					 computation

data=dlfp1t; 			 % data from channel 1
[S1,t,f]=mtspecgramc
(data,movingwin,params);	 % compute
					 spectrogram
subplot(121)
plot_matrix(S1,t,f);
xlabel([]);			 % plot spectrogram
caxis([8 28]); colorbar;

data=dlfp2t; 			 % data from channel 2
[S2,t,f]=mtspecgramc
(data,movingwin,params); 	 % compute
					 spectrogram
subplot(122);
plot_matrix(S2,t,f);
xlabel([]);			 % plot spectrogram
caxis([8 28]); colorbar;

Note the use of the special Chronux plotting rou-
tine plot_matrix. Here the window is set to 500 ms
in duration with a slide of 50 ms along the time axis
between successive windows.

The same sets of parameters used for continuous LFP
signals can be employed for calculating the spike
spectrograms (Fig. 14). However, one useful modifi-
cation to make when plotting spike spectrograms is
to normalize the spike power S by the mean firing
rate R. For example,

data=dsp1t; 			 % data from 1st cell
[S,t,f,R]=mtspecgrampt
(data,movingwin,params);	 % compute
					 spectrogram
figure;
subplot(211);
					 % plot spectrogram
					 normalized by rate
plot_matrix(S./repmat(R,
[1 size(S,2)]),t,f);xlabel([]);
caxis([-5 6]);colorbar;

data=dsp2t; 			 % data from 2nd cell
[S,t,f,R]=mtspecgrampt
(data,movingwin,params); 	 % compute
					 spectrogram
subplot(212);
					 % plot spectrogram
					 normalized by rate
plot_matrix(S./repmat(R,
[1 size(S,2)]),t,f);
caxis([-5 6]);colorbar;

The normalized spectrograms demonstrate how the
spike power fluctuates across the trials with respect
to the mean rate. Here one can readily observe that,
while there is an increase in gamma-band power in
the spike discharge with respect to the mean rate
during the delay period (Fig. 14, yellow-orange col-
ors, top subplot), the power in the lower-frequency
fluctuations in the spike discharge is suppressed with
respect to the mean rate (blue colors).

Coherence
As an example of the use of Chronux software for
evaluating the strength of correlations between differ-
ent neural signals, we will calculate the spike-field co-
herence for pairs drawn from the three LFP channels
and two spike channels in our monkey parietal lobe
data set. As discussed in “Spectral Analysis for Neural
Signals,” spike-field coherence is a frequency-domain
representation of the similarity of dynamics between
a spike train and the voltage fluctuations produced by
activity in the spiking neuron’s local neural environ-

Figure 13. Time-frequency spectrograms for two LFP chan-
nels. Activity from all trials, over the entire trial (3 s) used
for the analysis. Movingwin=[.5 .05], params.Fs=1000,
params.tapers=[5 9], params.fpass=[0 100], params.
pad=0, params.trialave=1, params.err=0.

74

Notes

© 2008 Purpura

ment. As before, we start by setting the values of the
parameters carried by the structure params:

params.Fs=1000; 		 % sampling frequency,
					 same for LFP and spike
params.fpass=[0 100]; 	 % frequency range
					 of interest
params.tapers=[10 19]; 	 % emphasize smoothing
					 for the spikes
params.trialave=1; 		 % average over trials
params.err=[1 0.05]; 	 % population error bars

delay_times=[1 2];		 % define the delay period
					 (between 1 and 2
					 seconds)
datasp=extractdatapt
(dsp1t,delay_times,1);	 % extract the spike data
					 from the delay period
datalfp=extractdatac
(dlfp1t,params.Fs,
delay_times);			 % extract the LFP data
					 from the delay period

[C,phi,S12,S1,S2,f,
zerosp,confC,phistd]=
coherencycpt
(datalfp,datasp,params);	 % compute the coherence

Note that the script for computing the coherency is
coherencycpt, a function that handles the hybrid case
mixing continuous and point process data. For the
outputs, we have the following:

•	 �C, the magnitude of the coherency, a complex
quantity (ranges from 0 to 1);

•	 �phi, the phase of the coherency;
•	 �S1 and S2, the spectra for the spikes and LFP

signals, respectively;
•	 �f, the frequency grid used for the calculations;
•	 �zerosp, 1 for trials for which there was at least one

spike, 0 for trials with no spikes;
•	 �confC, confidence level for C at (1 – p)% if

params.err=[1 p] or params.err=[2 p]; and
•	 �phistd, theoretical or jackknife standard devia-

tion, depending on the params.err selection

These are used to calculate the confidence intervals
for the phase of the coherency.

This code segment, which is called by the tutorial
script, should generate a graphic similar to Figure 15.
The top row of the figure shows the spike-field coher-
ence for spike 1 against the three LFP channels. The
bottom row has the spike-field coherence estimates
for spike 2 against the three LFP channels. The fig-
ure depicts the confidence level for the coherence
estimates as a horizontal dotted line running through
all the plots; coherence values above this level are
significant. We see from this figure that the spikes
and LFPs in the monkey parietal cortex showed an
enhanced coherence during the delay period for the
frequency range from ~25 Hz to more than 100 Hz
for all the matchups, except LFP3, with both spikes.
For the coherence measures involving LFP3, the co-
herence is not significant for very fast fluctuations
(>90 Hz).

Figure 15. Spike-field coherence. Top row: coherence es-
timates between cell (spike) 1 with LFP channel 1 (left), LFP
channel 2 (middle), and LFP channel 3 (right). Bottom row:
coherence estimates between cell (spike) 2 with LFP channel 1
(left), LFP channel 2 (middle), and LFP channel 3 (right). Signifi-
cance level for the coherence estimates: horizontal dotted line
running through all plots.

Figure 14. Time-frequency spike spectrograms for two spikes
recorded in LIP. Activity from all trials, over the entire trial
(3 s) used for the analysis. Spectrograms are normalized by
the mean rates of the two single units. Movingwin=[.5 .05],
params.Fs=1000, params.tapers=[5 9], params.fpass=
[0 100], params.pad=0, params.trialave=1, params.err=0.

75

Notes

© 2008 Purpura

Neural Signal Processing: Tutorial 1

Using Chronux, we can also estimate the coherence
between two spike trains. The setup of the parame-
ters for the calculation is very similar to that required
for the hybrid script:

>> params.err=[2 p];
>> [C,phi,S12,S1,S2,f,zerosp,confC,phistd,
Cerr]=coherencypt(datasp1,datasp2,params);

Here, phistd is the jackknifed standard deviation of
the phase, and Cerr is the (1 – p)% confidence in-
terval for the coherence. Figure 16 shows a plot of
the spike-spike coherence, comparing the delay
period activity (in blue) with the coherence during
the baseline (in red).

Denoising
In Figure 17, we expand the Data Conditioning
subgraph of the electrophysiology analysis proto-
col first introduced in Figure 1. The branch for the
LFP data carries us through two stages of processing:

local detrending and the testing and removal of 60
Hz line noise. Electrophysiological recordings, both
in the research laboratory and in clinical settings,
are prone to contamination. 60 Hz line noise (50 Hz
in Europe), slow drifts in baseline voltage, electrical
transients, ECG, and breathing movements all con-
tribute different types of distortion to the recorded
signal. Methods for removing particular waveforms,
such as ECG and large electrical transients, have
good solutions that are treated elsewhere (Perasan B,

“Spectral Analysis for Neural Signals”; Mitra and
Pesaran, 1999; Sornborger et al., 2005; Mitra and
Bokil, 2008). We will focus here on slow fluctuations
in electrophysiological signals and line noise.

If we add a sinusoidal voltage fluctuation to one of

our LIP LFP recordings, the result will look some-
thing like Figure 18 (top left). Such a slow fluctua-
tion could be entirely the result of changes in the
electrostatic charges built up around the recording
environment. Therefore, it is noise and we should
try to remove it. With Chronux, we use a local lin-
ear regression to detrend neural signals. The script
locdetrend utilizes a moving window controlled by
params to select time samples from the signal. The
best fitting line, in a least-squares sense, for each
sample is weighted and combined to estimate the
slow fluctuation, which is then removed from the
data signal.

For Figure 18 (top middle),

>> dLFP=locdetrend(LFP,[.1 .05]).

The dimensions of the sampling window are 100 ms

Figure 16. Coherence between spikes of cell 1 and cell 2. Blue
traces: data restricted to the delay period of each trial (solid
line, average coherence; dashed lines, 95% jackknife confi-
dence interval for this estimate of the coherence). Red trace:
data restricted to the baseline period of each trial. Horizontal
line: significance level for the coherence estimates. params.
Fs=1000, params.tapers=[10 19], params.fpass=[0 100],
params.pad=0, params.trialave=1, params.err=[2 .05].

Figure 17. Data conditioning component of electrophysiologi-
cal analysis protocol.

76

Notes

© 2008 Purpura

in duration, with a window shift of 50 ms between
samples. Note that the detrended signal has much less
low-frequency fluctuation than the original signal (Fig.
18, top left). In Figure 18 (top right), we see that the
estimate of the slow fluctuation (blue) does a pretty
good job of capturing the actual signal (red) that was
added to the LFP data. However, if the sampling win-
dow parameters are not well matched to changes in
the signal, the detrending will not be successful.

For Figure 18 (bottom, center),

>> dLFP=locdetrend(LFP,[.5 .1]).

Window duration = 500 ms, half the sample length
with a window shift of 100 ms. Here the estimate of
the slow fluctuation (blue) does a poor job of captur-
ing the sinusoid (Fig. 18, red, bottom right).

Chronux accomplishes the removal of 60 Hz line
noise by applying Thomson’s regression method for
detecting sinusoids in signals (Thomson, 1982). This
method does not require that the data signal have
a uniform (white) power spectrum. The Chronux
script rmlinesc can either remove a sinusoid of chosen
frequency or automatically remove any harmonics
whose power exceeds a criterion in the F-distribution
(the F-test). Figure 19 demonstrates the application
of the F-test option of rmlinesc.

>>no60LFP=rmlinesc(LFP,params).

Here the LFP (Fig. 19, top left) has been contaminat-
ed with the addition of a 60 Hz sinusoid. The mul-
titaper spectrum of this signal is shown in Figure 19
(top right panel). Note the prominent 60 Hz element
in this spectrum (broadened but well defined by the
application of the multitaper technique). The spec-

trum of no60LFP is shown in the figure’s bottom left
panel; the time series with the 60 Hz noise removed,
the vector returned by rmlinesc, is shown in the bot-
tom right panel.

Appendix: Chronux Scripts
While not an exhaustive list of what is available in
Chronux, the scripts enumerated here (discussed in
this chapter) are often some of the most useful for
trying first during the early phase of exploratory data
analysis. This section describes the means for setting
some of the more important parameters for control-
ling multitaper spectral calculations, as well as the
basic rules for formatting input data.

Denoising
(1) �Slow variations (e.g., movements of a patient for

EEG data)
		 locdetrend.m: Loess method
(2) �50/60 Hz line noise
		 rmlinesc.m
		 rmlinesmovingwinc.m

Spectra and coherences (continuous processes)
(1) Fourier transforms using multiple tapers
		 mtfftc.m
(2) Spectrum
		 mtspectrumc.m
(3) Spectrogram
		 mtspecgramc.m
(4) Coherency
		 mtcoherencyc.m
(5) Coherogram
		 mtcohgramc.m
Analogous scripts are available for analyzing time

Figure 19. Application of rmlinesc.

Figure 18. Application of locdetrend.

77

Notes

© 2008 Purpura

Neural Signal Processing: Tutorial 1

series data organized in alternative formats. Point-
process time series data can be analyzed using
mtfftpt.m, mtspectrumpt.m, etc. Binned spike count
data can be analyzed with mtfftb.m, mtspectrumb.m,
etc. An additional set of scripts is available for cal-
culating the coherence between a continuous series
and a point-process time series (coherencycpt.m,
coherogramcpt.m, etc.), and for the coherence
between a continuous and binned spike counts
(coherencycpb.m, coherogramcpb.m, etc).

In a typical function call, such as

[S,f,Serr]=mtspectrumc(data,params), a structure
params is passed to the script. This structure sets val-
ues for a number of important parameters used by
this and many other algorithms in Chronux.

params.Fs	� Sampling frequency (e.g., if data
are sampled at 1 kHz, use 1000).

params.tapers 	� Number of tapers to use in spectral
analysis specified by either passing
a matrix of precalculated Slepian
tapers (using the dpss function in
MATLAB) or calculating the time-
frequency bandwidth and the num-
ber of tapers as [NW K], where K is
the number of tapers. Default val-
ues are params.tapers=[3 5]. 	

params.pad	� Amount of zero-padding for the
FFT routines utilized in the multi-
taper spectral analysis algorithms. If
pad = –1, no padding; if pad = 0,
the FFT is padded to 512 points; if
pad = 1, the FFT is padded to 1024
points, pad = 2, padding is 2048
points, etc. For a spectrum with a
dense frequency grid, use more pad-
ding.

params.fpass	� Frequency range of interest. As a
default, [0 Fs/2] will allow from DC
up to the Nyquist limit of the sam-
pling rate.

params.err	� Controls error computation. For
err=[1 p], so-called theoretical er-
ror bars at significance level p are
generated and placed in the output
Serr; err=[2 p] for jackknife error
bars; err=[0 p] or err=0 for no error
bars (make sure that Serr is not re-
quested in the output in this case).

params.trialavg	� If 1, average over trials/channels; if
set to 0 (default), no averaging.

Local regression and likelihood

(1) Regression and likelihood
		 locfit.m
(2) Plotting the fit
		 lfplot.m	
(3) Plotting local confidence bands
		 lfband.m
(4) Plotting global confidence bands	
		 scb.m

Data format
(1) Continuous/binned spike count data
		� Matrices with dimensions: time (rows) ×

trials/channels (columns)
		� Example: 1000 × 10 matrix is interpreted as

1000 time-point samples for 10 trials from 1
channel or 1 trial from 10 channels. If mul-
tiple trials and channels are used, then add
more columns to the matrix for each addi-
tional trial and channel.

(2) Spike times
		� Structured array with dimension equal to the

number of trials/channels.
		 �Example: 	 data(1).times=[0.3 0.35 0.42 0.6]
				 data(2).times=[0.2 0.22 0.35]
		� Chronux interprets data as two trials/chan-

nels: four spikes collected at the times (in
seconds) listed in the bracket for the first
trial/channel, and three spikes collected in
the second trial/channel.

Supported third-party data formats
NeuroExplorer (.NEX)
Plexon (both .PLX and .DDT file formats)

References
Mitra PP, Bokil H (2008) Observed Brain Dynamics.

New York: Oxford UP.

Mitra PP, Pesaran B (1999) Analysis of dynamic
brain imaging data. Biophys J 76:691-708.

Sornborger A, Yokoo T, Delorme A, Sailstad C,
Sirovich L (2005) Extraction of the average
and differential dynamical response in stimulus-
locked experimental data. J Neurosci Methods
141:223-229.

Thomson DJ (1982) Spectrum estimation and har-
monic analysis. Proc IEEE 70:1055-1096.

